Question	Scheme	Marks	AOs
1	Finds critical values $x^2 - x > 20 \Rightarrow x^2 - x - 20 > 0 \Rightarrow x = (5, -4)$	M1	1.1b
	Chooses outside region for their values Eg. $x > 5$, $x < -4$	M1	1.1b
	Presents solution in set notation $\{x: x < -4\} \cup \{x: x > 5\}$ oe	A1	2.5
		(3)	
		(3	8 marks)
	Notes		

M1: Attempts to find the critical values using an algebraic method. Condone slips but an allowable method should be used and two critical values should be found

M1: Chooses the outside region for their critical values. This may appear in incorrect inequalities such as 5 < x < -4

A1: Presents in set notation as required $\{x: x < -4\} \cup \{x: x > 5\}$ Accept $\{x < -4 \cup x > 5\}$. Do not accept $\{x < -4, x > 5\}$

Note: If there is a contradiction of their solution on different lines of working do not penalise intermediate working and mark what appears to be their final answer.

Questi	on Scheme	Marks	AOs		
	Complete method to find the RHS of an equation for <i>l</i>	Marks	AUS		
2		M1	1.1b		
	e.g., Attempts gradient = $\frac{80-60}{10} \{=2\}$ and uses intercept = 60				
	$\{y=\}2x+60$	A1	1.1b		
	Deduces the RHS of the equation for C is $\{y=\}ax(x-6)$	N/1	2.1-		
	and attempts to use $(10, 80)$ to find the value of <i>a</i>	M1	3.1a		
	Equation of <i>C</i> is $\{y=\}2x(x-6)$	A1	1.1b		
	$2x(x-6) \leqslant y \leqslant 2x+60$	B1ft	2.5		
		(5)			
		(5 n	narks)		
Notes	:				
M1: A1: M1:	Complete attempt to use the given information to find an equation or inequality for <i>l</i> , which hay be $l = $ or have no LHS. $y - 80 = 2(x - 10)$ is acceptable for this mark. y = 2x + 60 This is not scored by $y - 80 = 2(x - 10)beduces the RHS of the equation of C is \{y = ax(x-6), a \neq 1, and attempts to use (10,80)of find the value of a which may be implied. Again, there may be no LHS.Other possible and more lengthy alternatives include:) Setting the RHS to be \{y = a(x-3)^2 + b \text{ and using } (0,0) \text{ and } (10,80) to find a and b$				
) Setting the RHS to be $\{y=\}px^2 + qx$ and using (6,0) and (10,80) to find p and q				
A1:	$\{y=\}2x(x-6)$ or alternative such as $\{y=\}2(x-3)^2-18$ or $\{y=\}2x^2-12x^2$	c			
A1:		c			
A1: B1ft:	$\{y=\}2x(x-6)$ or alternative such as $\{y=\}2(x-3)^2-18$ or $\{y=\}2x^2-12x^2$	C = 2x(x)			
	$\{y=\}2x(x-6)$ or alternative such as $\{y=\}2(x-3)^2-18$ or $\{y=\}2x^2-12x^2$. This may be implied by an inequality $y2x(x-6)$ and may be seen as, e.g. $"2x(x-6)" \le y \le "2x+60"$ o.e. must follow from their <i>l</i> and <i>C</i> and apply isw Follow through only on a quadratic for <i>C</i> and a straight line for <i>l</i>	C = 2x(x)			
	$\{y=\}2x(x-6)$ or alternative such as $\{y=\}2(x-3)^2-18$ or $\{y=\}2x^2-12x$. This may be implied by an inequality $y2x(x-6)$ and may be seen as, e.g. " $2x(x-6)$ " $\leq y \leq$ " $2x+60$ " o.e. must follow from their <i>l</i> and <i>C</i> and apply isw Follow through only on a quadratic for <i>C</i> and a straight line for <i>l</i> Do not allow a mixture of inequalities, i.e., \leq with \leq	C = 2x(x) $C = 2x(x)$ $2x + 60$	-6)		
	$\{y=\}2x(x-6)$ or alternative such as $\{y=\}2(x-3)^2-18$ or $\{y=\}2x^2-12x$. This may be implied by an inequality $y2x(x-6)$ and may be seen as, e.g. " $2x(x-6)$ " $\leq y \leq$ " $2x+60$ " o.e. must follow from their <i>l</i> and <i>C</i> and apply isw Follow through only on a quadratic for <i>C</i> and a straight line for <i>l</i> Do not allow a mixture of inequalities, i.e., \leq with \leq Allow $2x^2-12x < y < 2x+60$ or as separate inequalities $y > 2x(x-6)$, $y <$ Do not allow $2x(x-6) < R < 2x+60$ or $2x(x-6) < f(x) < 2x+60$ or $2x(x-6)$ Ignore any reference to $-3 < x < 10$	C = 2x(x) $C = 2x(x)$ $2x + 60$ $(x - 6) < 2x$	-6)		
	$\{y=\}2x(x-6)$ or alternative such as $\{y=\}2(x-3)^2-18$ or $\{y=\}2x^2-12x^2$. This may be implied by an inequality $y2x(x-6)$ and may be seen as, e.g. " $2x(x-6)$ " $\leq y \leq$ " $2x+60$ " o.e. must follow from their <i>l</i> and <i>C</i> and apply isw Follow through only on a quadratic for <i>C</i> and a straight line for <i>l</i> Do not allow a mixture of inequalities, i.e., \leq with \leq Allow $2x^2-12x < y < 2x+60$ or as separate inequalities $y > 2x(x-6)$, $y <$ Do not allow $2x(x-6) < R < 2x+60$ or $2x(x-6) < f(x) < 2x+60$ or $2x(x-6) < x < x$	C = 2x(x) $C = 2x(x)$ $2x + 60$ $(x - 6) < 2x$	-6)		

Question	Scheme	Marks	AOs
3 (a)	2 < <i>x</i> < 6	B1	1.1b
		(1)	
(b)	States either $k > 8$ or $k < 0$	M1	3.1a
	States e.g. $\{k: k > 8\} \cup \{k: k < 0\}$	A1	2.5
		(2)	
(c)	Please see notes for alternatives		
	States $y = ax(x-6)^2$ or $f(x) = ax(x-6)^2$	M1	1.1b
	Substitutes (2,8) into $y = ax(x-6)^2$ and attempts to find <i>a</i>	dM1	3.1a
	$y = \frac{1}{4}x(x-6)^2$ or $f(x) = \frac{1}{4}x(x-6)^2$ o.e	A1	2.1
		(3)	
		(6 marks)	

the answer space, the one in the answer space takes precedence

(a)

B1: Deduces 2 < x < 6 o.e. such as x > 2, x < 6 x > 2 and x < 6 $\{x : x > 2\} \cap \{x : x < 6\}$ $x \in (2, 6)$ Condone attempts in which set notation is incorrectly attempted but correct values can be seen

or implied E.g. $\{x > 2\} \cap \{x < 6\} \{x > 2, x < 6\}$. Allow just the open interval (2, 6)

Do not allow for incorrect inequalities such as e.g. x > 2 or x < 6, $\{x : x > 2\} \cup \{x : x < 6\}$ $x \in [2, 6]$

(b)

- M1: Establishes a correct method by finding one of the (correct) inequalities States either k > 8 (condone $k \ge 8$) or k < 0 (condone $k \le 0$) Condone for this mark $y \leftrightarrow k$ or $f(x) \leftrightarrow k$ and 8 < k < 0
- A1: Fully correct solution in the form $\{k:k>8\} \cup \{k:k<0\}$ or $\{k|k>8\} \cup \{k|k<0\}$ either way around but condone $\{k<0\} \cup \{k>8\}$, $\{k:k<0\cup k>8\}$, $\{k<0\cup k>8\}$. It is not necessary to mention \mathbb{R} , e.g. $\{k:k\in\mathbb{R}, k>8\} \cup \{k:k\in\mathbb{R}, k<0\}$ Look for $\{\}$ and \cup

Do not allow solutions not in set notation such as k < 0 or k > 8.

- (c)
- M1: Realises that the equation of *C* is of the form $y = ax(x-6)^2$. Condone with a = 1 for this mark. So award for sight of $ax(x-6)^2$ even with a = 1
- dM1: Substitutes (2,8) into the form $y = ax(x-6)^2$ and attempts to find the value for *a*. It is dependent upon having an equation, which the (y = ...) may be implied, of the correct form.
- A1: Uses all of the information to form a correct **equation** for $C = y = \frac{1}{4}x(x-6)^2$ o.e.

ISW after a correct answer. Condone $f(x) = \frac{1}{4}x(x-6)^2$ but not $C = \frac{1}{4}x(x-6)^2$.

Allow this to be written down for all 3 marks

Examples of alternative methods

Alternative I part (c):

Using the form $y = ax^3 + bx^2 + cx$ and setting up then solving simultaneous equations. There are various versions of this but can be marked similarly

- M1: Realises that the equation of *C* is of the form $y = ax^3 + bx^2 + cx$ and forms two equations in *a*, *b* and *c*. Condone with a = 1 for this mark. Note that the form $y = ax^3 + bx^2 + cx + d$ is M0 until *d* is set equal to 0. There are four equations that could be formed, only two are necessary for this mark. Condone slips Using $(6, 0) \implies 216a + 36b + 6c = 0$ Using $(2, 8) \implies 8a + 4b + 2c = 8$ Using $\frac{dy}{dx} = 0$ at $x = 2 \implies 12a + 4b + c = 0$ Using $\frac{dy}{dx} = 0$ at $x = 6 \implies 108a + 12b + c = 0$
- dM1: Forms and solves three different equations, one of which must be using (2, 8) to find values for *a*, *b* and *c*. A calculator can be used to solve the equations
- A1: Uses all of the information to form a correct equation for $C = y = \frac{1}{4}x^3 3x^2 + 9x$ o.e.

ISW after a correct answer. Condone $f(x) = \frac{1}{4}x^3 - 3x^2 + 9x$

Alternative II part (c) Using the gradient and integrating

M1: Realises that the gradient of *C* is zero at 2 and 6 so sets f'(x) = k(x-2)(x-6) oe **and** attempts to integrate. Condone with k = 1

dM1: Substitutes x = 2, y = 8 into $f(x) = k(...x^3 + ...x + ...)$ and finds a value for k

A1: Uses all of the information to form a correct equation for C $y = \frac{3}{4} \left(\frac{1}{3}x^3 - 4x^2 + 12x \right)$ o.e.

ISW after a correct answer. Condone $f(x) = \frac{3}{4} \left(\frac{1}{3}x^3 - 4x^2 + 12x \right)$

.....

Question	Scheme	Marks	AOs	
4 (i)	For setting up the contradiction:			
	There exists integers p and q such that pq is even and both p and q are odd	B1	2.5	
	For example, sets $p = 2m+1$ and $q = 2n+1$ and then attempts $pq = (2m+1)(2n+1) =$	M1	1.1b	
	Obtains $pq = (2m+1)(2n+1) = 4mn + 2m + 2n + 1$			
	=2(2mn+m+n)+1	A1*	2.1	
	States that this is odd, giving a contradiction so			
	" if pq is even, then at least one of p and q is even" *			
		(3)		
(ii)				
	$(x+y)^2 < 9x^2 + y^2 \Longrightarrow 2xy < 8x^2$	M1	2.2a	
	States that as			
	$x < 0 \Longrightarrow 2y > 8x$	A1*	2.1	
	$\Rightarrow y > 4x *$			
		(2)		
	1	(5 marl		

(i)

- B1: For using the "correct"/ allowable language in setting up the contradiction. Expect to see a minimum of
 - "assume" or "let" or "there is " or other similar words
 - "*pq* is even" and "*p* and *q* are (both) odd"
- M1: Uses a correct algebraic form for p and q and attempting to multiply.

Allow any correct form so p = 2n+1 and q = 2m+3 would be fine to use

Different variables must be used for *p* and *q*, so p = 2n+1 and q = 2n-1 would be M0

- A1*: Full argument.
 - This requires (1) a correct calculation for their pq
 - (2) a correct reason and conclusion that it is odd

E.g. (2m+1)(2n+1) = 4mn + 2m + 2n + 1 = 2(2mn + m + n) + 1 = odd

E.g. (2m-1)(2n+1) = 4mn + 2m - 2n - 1 = even + even - even - 1 = odd

and (3) a minimal statement implying that they have proven what was required which could be QED, proven etc

Note that B0 M1 A1 is possible

(ii)

- M1: For multiplying out and cancelling terms before proceeding to a correct intermediate line such as $2xy < 8x^2$ o.e. such as 2x(4x y) > 0
- A1*: Full and rigorous proof with reason shown as to why inequality reverses. The point at which it reverses must be correct and a correct reason given

See scheme

Alt:
$$2xy < 8x^2 \Rightarrow xy - 4x^2 < 0 \Rightarrow x(y - 4x) < 0$$

as $x < 0$, $(y - 4x) > 0 \Rightarrow y > 4x$ scores M1 A1

So, the following should be scored M1 A0 as line 3 is incorrect

$$2xy - 8x^{2} < 0$$

$$\Rightarrow 2xy < 8x^{2}$$

$$\Rightarrow y < 4x$$

$$\Rightarrow y > 4x \text{ as } x < 0$$

There should be no incorrect lines in their proof